On eccentric distance sum and minimum degree
نویسندگان
چکیده
منابع مشابه
Further results on the eccentric distance sum
The eccentric distance sum (EDS) is a novel graph invariant which can be used to predict biological and physical properties, and has a vast potential in structure activity/property relationships. For a connected graph G, its EDS is defined as ξ d (G) = ∑ v∈V (G) ecc G (v)D G (v), where ecc G (v) is the eccentricity of a vertex v in G and D G (v) is the sum of distances of all vertices in G from...
متن کاملeccentric connectivity index and eccentric distance sum of some graph operations
let $g=(v,e)$ be a connected graph. the eccentric connectivity index of $g$, $xi^{c}(g)$, is defined as $xi^{c}(g)=sum_{vin v(g)}deg(v)ec(v)$, where $deg(v)$ is the degree of a vertex $v$ and $ec(v)$ is its eccentricity. the eccentric distance sum of $g$ is defined as $xi^{d}(g)=sum_{vin v(g)}ec(v)d(v)$, where $d(v)=sum_{uin v(g)}d_{g}(u,v)$ and $d_{g}(u,v)$ is the distance between $u$ and $v$ ...
متن کاملThe eccentric-distance sum of some graphs
Let G = (V,E) be a simple connected graph. The eccentric-distance sum of G is defined as ξ(G) = ∑ {u,v}⊆V (G) [e(u) + e(v)]d(u, v), where e(u) is the eccentricity of the vertex u in G and d(u, v) is the distance between u and v. In this paper, we establish formulae to calculate the eccentric-distance sum for some graphs, namely wheel, star, broom, lollipop, double star, friendship, multi-star g...
متن کاملBounds for the Adjacent Eccentric Distance Sum
The adjacent eccentric distance sum index of a graph G is defined as ξsv(G) = ∑ v∈V (G) ε(v)D(v) deg(v) , where ε(v), deg(v) denote the eccentricity, the degree of the vertex v, respectively, and D(v) = ∑ u∈V (G) d(u, v) is the sum of all distances from the vertex v. In this paper we derive some upper or lower bounds for the adjacent eccentric distance sum in terms of some graph invariants or t...
متن کاملExtremal values on the eccentric distance sum of trees
Abstract: Let G = (VG, EG) be a simple connected graph. The eccentric distance sum of G is defined as ξ(G) = ∑ v∈VG εG(v)DG(v), where εG(v) is the eccentricity of the vertex v and DG(v) = ∑ u∈VG dG(u, v) is the sum of all distances from the vertex v. In this paper the tree among n-vertex trees with domination number γ having the minimal eccentric distance sum is determined and the tree among n-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2014
ISSN: 0166-218X
DOI: 10.1016/j.dam.2014.05.019